Abstract

Challenges and opportunities coexist in microgrids as a result of emerging large-scale distributed energy resources (DERs) and advanced control techniques. In this paper, a comprehensive review of microgrid control is presented with its fusion of model-free reinforcement learning (MFRL). A high-level research map of microgrid control is developed from six distinct perspectives, followed by bottom-level modularized control blocks illustrating the configurations of grid-following (GFL) and grid-forming (GFM) inverters. Then, mainstream MFRL algorithms are introduced with an explanation of how MFRL can be integrated into the existing control framework. Next, the application guideline of MFRL is summarized with a discussion of three fusing approaches, i.e., model identification and parameter tuning, supplementary signal generation, and controller substitution, with the existing control framework. Finally, the fundamental challenges associated with adopting MFRL in microgrid control and corresponding insights for addressing these concerns are fully discussed.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

data-driven control; grid-following and grid-forming inverters; Microgrid control; modelfree reinforcement learning; review and vision

International Standard Serial Number (ISSN)

1949-3061; 1949-3053

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.

Publication Date

01 Jul 2023

Share

 
COinS