A Neural Network Representation of a Decentralized Model of the Human Retina
Abstract
The human vision process is presented as a linear, decentralized, continuous time system. This model is then transformed into a representation using neural networks and incorporating non-linearities. First, each cell in the human retina is analyzed to find its specific function. Second, the individual cells are grouped into interconnected systems. Third, a neural network is implemented to model each subsystem. The neural network architecture selected is the Three-Neuron Controller (TNC). Finally, the interconnections are also represented as a neural network, with the nodes being composed of the subsystems. Two major results are presented. First, the overall image quality is improved with the incorporation of neural networks. Second, better edge enhancement is achieved. The edge enhancement is a product of the interconnections between the subsystems.
Recommended Citation
R. S. Woodley and L. Acar, "A Neural Network Representation of a Decentralized Model of the Human Retina," Intelligent Engineering Systems Through Artificial Neural Networks, vol. 10, pp. 191 - 196, American Society of Mechanical Engineers (ASME), Nov 2000.
Meeting Name
Artificial Neural Networks in Engineering Conference, ANNIE 2000 (2000: Nov. 5-8, St. Louis, MO)
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Artificial Intelligence; Neural Networks
International Standard Book Number (ISBN)
978-0791801611
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2000 American Society of Mechanical Engineers (ASME), All rights reserved.
Publication Date
01 Nov 2000