Abstract
This paper presents a recombination statistical model for the neutron-induced base current component reported previously. The derivation was based on the following: 1) the current equation for the induced current component developed previously; 2) the Shockley-Read-Hall statistics for holes and electrons; and 3) the recombination statistics derived by Sah, Noyce and Shockley for sites in the bulk space-charge region. The recombination statistics model depends on the diffusion potential, the junction voltage, the activation energy, temperature, and the ratio of capture cross-sections for holes and electrons. The utility of such a recombination statistical model is illustrated by using measured parameters to predict the neutron-induced base current for p-n junction transistors and by comparing the results with measured base currents. Further, the temperature variation of the reciprocal slope term is calculated from the model and found to agree well with experiment. Copyright © 1968 by The Institute of Electrical and Electronics Engineers, Inc.
Recommended Citation
M. C. Chow et al., "Recombination Statistics For Neutron Bombarded Silicon Transistors," IEEE Transactions on Nuclear Science, vol. 15, no. 6, pp. 88 - 94, Institute of Electrical and Electronics Engineers, Jan 1968.
The definitive version is available at https://doi.org/10.1109/TNS.1968.4325036
Department(s)
Electrical and Computer Engineering
International Standard Serial Number (ISSN)
1558-1578; 0018-9499
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
01 Jan 1968