Abstract
Gene expression levels of organisms are measured by DNA microarrays. Finding biclusters in gene expression matrices provides invaluable information about effects of disease at the genetic level. These biclusters could identify which genes are up-regulated/down-regulated under certain conditions. This paper investigates a methodology for evolutionary-based biclustering using the NSGA-II algorithm. It also presents an improvement to the recovery and relevance external validation metrics as well as a new method for synthetic data generation for biclustering. Results obtained demonstrate its effectiveness in discovering useful biclusters on varied synthetic data when applied with the average Spearman's rho measure as the fitness function.
Recommended Citation
J. Dale et al., "Multi-objective Optimization Approach To Find Biclusters In Gene Expression Data," 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2019, article no. 8791451, Institute of Electrical and Electronics Engineers, Jul 2019.
The definitive version is available at https://doi.org/10.1109/CIBCB.2019.8791451
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
biclustering; evolutionary algorithm; gene expression data
International Standard Book Number (ISBN)
978-172811462-0
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
01 Jul 2019