Information Theoretical Sliding Window Optimization Applied to Discretization of Continuous Signals
Abstract
Sliding window analysis is common to many time domain signal analysis methods. Determination of the optimal window width requires several different conditions to be met. Intuition into the signal or knowledge of limitations of computational resources could help; or an optimization scheme may be carried out. Balance between information loss and computational complexity must be met in any case. In a recent study, the authors proposed an optimal windowing method through minimization of the average mutual information between sliding windows. It was meant to determine the optimal input layer width of an artificial neural network to extrapolate time domain data from electromagnetic simulations. They extended it to an optimal sampling scheme. In the one step limit, discretization of continuous signals is another kind of windowing. A continuous signal sampled with infinite-frequency, -which is the signal itselfhas the maximum average mutual information between sliding windows. This can be interpreted as waste of resources. Decreasing the sampling rate generally results in a nonlinear decay of the average mutual information between windows. The first minimum, at which the decay settles down before increasing again, generally corresponds to the optimal sampling rate.
Recommended Citation
H. Goksu and D. C. Wunsch, "Information Theoretical Sliding Window Optimization Applied to Discretization of Continuous Signals," Continuum Models and Discrete Systems, vol. 158, Springer Verlag (Germany), Jan 2004.
The definitive version is available at https://doi.org/10.1007/978-1-4020-2316-3_14
Meeting Name
NATO Advanced Research Workshop on Continuum Models and Discrete Systems (2003: Jun. 30-Jul. 4, Shoresh, Israel)
Department(s)
Electrical and Computer Engineering
International Standard Book Number (ISBN)
978-1402023156
International Standard Serial Number (ISSN)
1568-2609
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2004 Springer Verlag (Germany), All rights reserved.
Publication Date
01 Jan 2004