Abstract
Stochastic resonance (SR) is a natural process that without limit increases the precision of signal measurements in biological and physical sciences. Most artificial neural networks (NNs) are implemented on digital computers of fixed precision. A NN accessing universal approximation and a computational complexity class more powerful that of a Turing machine needs analog signals utilizing SR's limitless precision increase. This paper links an analog recurrent (AR) NN theorem, SR, BPP/log∗ (a physically realizable, super-Turing computation class), and universal approximation so NNs following them can be made computationally more powerful. An optical neural network mimicking chaos indicates super-Turing computation has been achieved. Additional tests are needed which can verify super Turing computation, show its superiority, and demonstrate its practical benefits. Truly powerful cognitively inspired computation needs to access the combination of ARNNs, SR, super-Turing mathematical complexity, and universal approximation.
Recommended Citation
E. Redd et al., "Stochastic Resonance Enables BPP/log∗ Complexity And Universal Approximation In Analog Recurrent Neural Networks," Proceedings of the International Joint Conference on Neural Networks, article no. 8851775, Institute of Electrical and Electronics Engineers, Jul 2019.
The definitive version is available at https://doi.org/10.1109/IJCNN.2019.8851775
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
cognitive theory; neural networks; stochastic resonance theory; super-Turing theory; universal approximation
International Standard Book Number (ISBN)
978-172811985-4
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
01 Jul 2019