Abstract
Reliable identification of Inflammatory biomarkers from metagenomics data is a promising direction for developing non-invasive, cost-effective, and rapid clinical tests for early diagnosis of IBD. We present an integrative approach to Network-Based Biomarker Discovery (NBBD) which integrates network analyses methods for prioritizing potential biomarkers and machine learning techniques for assessing the discriminative power of the prioritized biomarkers. Using a large dataset of new-onset pediatric IBD metagenomics biopsy samples, we compare the performance of Random Forest (RF) classifiers trained on features selected using a representative set of traditional feature selection methods against NBBD framework, configured using five different tools for inferring networks from metagenomics data, and nine different methods for prioritizing biomarkers as well as a hybrid approach combining best traditional and NBBD based feature selection. We also examine how the performance of the predictive models for IBD diagnosis varies as a function of the size of the data used for biomarker identification. Our results show that (i) NBBD is competitive with some of the state-of-the-art feature selection methods including Random Forest Feature Importance (RFFI) scores; and (ii) NBBD is especially effective in reliably identifying IBD biomarkers when the number of data samples available for biomarker discovery is small.
Recommended Citation
M. Abbas et al., "Biomarker Discovery In Inflammatory Bowel Diseases Using Network-based Feature Selection," PLoS ONE, vol. 14, no. 11, article no. e0225382, Public Library of Science, Nov 2019.
The definitive version is available at https://doi.org/10.1371/journal.pone.0225382
Department(s)
Electrical and Computer Engineering
Publication Status
Open Access
International Standard Serial Number (ISSN)
1932-6203
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Nov 2019
PubMed ID
31756219
Comments
National Science Foundation, Grant 1518732