Abstract
In this article, a data-driven distributed control method is proposed to solve the cooperative optimal output regulation problem of leader-follower multiagent systems. Different from traditional studies on cooperative output regulation, a distributed adaptive internal model is originally developed, which includes a distributed internal model and a distributed observer to estimate the leader's dynamics. Without relying on the dynamics of multiagent systems, we have proposed two reinforcement learning algorithms, policy iteration and value iteration, to learn the optimal controller through online input and state data, and estimated values of the leader's state. By combining these methods, we have established a basis for connecting data-distributed control methods with adaptive dynamic programming approaches in general since these are the theoretical foundation from which they are built.
Recommended Citation
W. Gao et al., "Reinforcement Learning-Based Cooperative Optimal Output Regulation Via Distributed Adaptive Internal Model," IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 10, pp. 5229 - 5240, Institute of Electrical and Electronics Engineers, Oct 2022.
The definitive version is available at https://doi.org/10.1109/TNNLS.2021.3069728
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Adaptive optimal control; cooperative output regulation; distributed adaptive internal model; reinforcement learning
International Standard Serial Number (ISSN)
2162-2388; 2162-237X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
01 Oct 2022
PubMed ID
33852393