DNN-Based RFID Antenna Tags Localization
Abstract
Radio frequency identification technology (RFID) is increasingly becoming an integral part of the Internet-of-Things (IoT). It offers different advantages including battery-free operation, small form-factor, and low cost. This makes the RFID an enticing technology for an indoor localization-based application and services. Geometry based localization approaches often achieve low accuracy due to errors introduced by a multipath propagation and interference in indoor environments. Many range-based algorithms assume that reader position is known in advance and there are carefully placed reference tags. In contrast, this paper presents a data driven localization methodology for direction-of-arrival (DOA) estimation using a deep neural network processing of signal captured with a reader antenna array. The proposed approach learns the complex mapping of the radio waves interactions in adverse metal environments based on received signal strength indicator (RSSI) values. The RSSI is captured while electrically steering a planar phased array through the area of interest. The proposed methodology is evaluated with multiple tags placed on metallic surfaces. Using readily available measurements, the proposed approach is able to achieve an average DOA error of 5.93 degrees.
Recommended Citation
S. J. Patel and M. J. Zawodniok, "DNN-Based RFID Antenna Tags Localization," Proceedings of the IEEE Instrumentation and Measurement Technology Conference (2021, Glasgow, UK), article no. 9460004, Institute of Electrical and Electronics Engineers (IEEE), May 2021.
The definitive version is available at https://doi.org/10.1109/I2MTC50364.2021.9460004
Meeting Name
2021 IEEE International Instrumentation and Measurement Technology Conference, I2MTC (2021: May 17-20, Glasgow, UK)
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Deep Neural Network (DNN); Direction-Of-Arrival (DOA); Internet-Of-Things (IoT); Localization; Machine Learning (ML); Phased Array Antennas; UHF RFID
International Standard Book Number (ISBN)
978-172819539-1
International Standard Serial Number (ISSN)
1091-5281
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2021 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
20 May 2021