Abstract
We present a framework for an explainable and statistically validated ensemble clustering model applied to Traumatic Brain Injury (TBI). The objective of our analysis is to identify patient injury severity subgroups and key phenotypes that delineate these subgroups using varied clinical and computed tomography data. Explainable and statistically-validated models are essential because a data-driven identification of subgroups is an inherently multidisciplinary undertaking. In our case, this procedure yielded six distinct patient subgroups with respect to mechanism of injury, severity of presentation, anatomy, psychometric, and functional outcome. This framework for ensemble cluster analysis fully integrates statistical methods at several stages of analysis to enhance the quality and the explainability of results. This methodology is applicable to other clinical data sets that exhibit significant heterogeneity as well as other diverse data science applications in biomedicine and elsewhere.
Recommended Citation
D. Yeboah et al., "An Explainable and Statistically Validated Ensemble Clustering Model Applied to the Identification of Traumatic Brain Injury Subgroups," IEEE Access, vol. 8, pp. 180690 - 180705, Institute of Electrical and Electronics Engineers (IEEE), Sep 2020.
The definitive version is available at https://doi.org/10.1109/ACCESS.2020.3027453
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Third Department
Mathematics and Statistics
Research Center/Lab(s)
Center for High Performance Computing Research
Second Research Center/Lab
Intelligent Systems Center
Keywords and Phrases
Canonical Discriminant Analysis; Clustering; Ensemble Learning; Explainable AI; Hybrid Human-Machine Systems; Mixed Models; Multicollinearity; Precision Medicine
International Standard Serial Number (ISSN)
2169-3536
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2020 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Publication Date
28 Sep 2020
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Statistics and Probability Commons
Comments
Army Research Laboratory, Grant W911NF-14-2-0034