Abstract
In this paper, a neural network predictive controller (NNPC) is proposed to control a buck converter. Conventional controllers such as proportional-integral (PI) or proportional-integral-derivative (PID) are designed based on the linearized small-signal model near the operating point. Therefore, the performance of the controller in the start-up, load change, or reference change is not optimal since the system model changes by changing the operating point. The neural network predictive controller optimally controls the buck converter by following the concept of the traditional model predictive controller. The advantage of the NNPC is that the neural network system identification decreases the inaccuracy of the system model with inaccurate parameters. A NNPC with a well-trained neural network can perform as an optimal controller for the buck converter. To compare the effectiveness of the traditional buck converter and the NNPC, the simulation results are provided.
Recommended Citation
S. Saadatmand et al., "The Voltage Regulation of a Buck Converter using a Neural Network Predictive Controller," Proceedings of the 2020 IEEE Texas Power and Energy Conference (2020, College Station, TX), Institute of Electrical and Electronics Engineers (IEEE), Feb 2020.
The definitive version is available at https://doi.org/10.1109/TPEC48276.2020.9042588
Meeting Name
2020 IEEE Texas Power and Energy Conference, TPEC (2020: Feb. 6-7, College Station, TX)
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Center for Research in Energy and Environment (CREE)
Keywords and Phrases
DC-DC Converters; Buck; Model Predictive Controller; Neural Network Predictive Controller
International Standard Book Number (ISBN)
978-1-7281-4436-8
Document Type
Article - Conference proceedings
Document Version
Accepted Manuscript
File Type
text
Language(s)
English
Rights
© 2020 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
07 Feb 2020