Abstract
In this paper a neural network heuristic dynamic programing (HDP) is used for optimal control of the virtual inertia-based control of grid connected three-phase inverters. It is shown that the conventional virtual inertia controllers are not suited for non-inductive grids. A neural network-based controller is proposed to adapt to any impedance angle. Applying an adaptive dynamic programming controller instead of a supervised controlled method enables the system to adjust itself to different conditions. The proposed HDP consists of two subnetworks: critic network and action network. These networks can be trained during the same training cycle to decrease the training time. The simulation results confirm that the proposed neural network HDP controller performs better than the traditional direct-fed voltage and/or reactive power controllers in virtual inertia control schemes.
Recommended Citation
S. Saadatmand et al., "Heuristic Dynamic Programming for Adaptive Virtual Synchronous Generators," Proceedings of the 2019 North American Power Symposium (2019, Wichita, KS), Institute of Electrical and Electronics Engineers (IEEE), Oct 2019.
The definitive version is available at https://doi.org/10.1109/NAPS46351.2019.9000393
Meeting Name
2019 North American Power Symposium, NAPS (2019: Oct. 13-15, Wichita, KS)
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Center for Research in Energy and Environment (CREE)
Second Research Center/Lab
Center for High Performance Computing Research
Keywords and Phrases
Grid Connected Inverter; Heuristic Dynamic Programming; Neural Network; Virtual Synchronous Generator
International Standard Book Number (ISBN)
978-1-7281-0407-2
Document Type
Article - Conference proceedings
Document Version
Accepted Manuscript
File Type
text
Language(s)
English
Rights
© 2019 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
15 Oct 2019