Abstract
Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC's accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on the accuracy. The proposed methodology is tested and verified on a stochastic edge detection circuit to showcase its viability. Results prove that the proposed approach offers a 12—60% reduction in execution time and a 12—78% decrease in the energy consumption relative to the conventional counterpart. This excellent scalability between energy and performance could be potentially beneficial to certain application domains such as image processing and machine learning, where power and time-efficient approximation is desired.
Recommended Citation
P. Metku et al., "Energy-Performance Scalability Analysis of a Novel Quasi-Stochastic Computing Approach," Journal of Low Power Electronics and Applications, vol. 9, no. 4, MDPI AG, Dec 2019.
The definitive version is available at https://doi.org/10.3390/jlpea9040030
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Energy-Performance Scalability; Low Discrepancy Sequence; Stochastic Computing
International Standard Serial Number (ISSN)
2079-9268; 2079-9268
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Dec 2019