An Energy Efficient Decoding Scheme for Nonlinear MIMO-OFDM Network using Reservoir Computing
Abstract
Reservoir computing (RC) is attracting widespread attention in several signal processing domains owing to its nonlinear stateful computation. It deals particularly well with time-series prediction tasks and reduces training complexity over recurrent neural networks. It is also suitable for hardware implementation whereby device physics are utilized in performing data processing. In this paper, the RC concept is applied to modeling a Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system. Due to the harsh propagation environment, the transmitted signal undergoes severe distortion that must be compensated for at the receiver. The nonlinear distortion introduced by the power amplifier at the transmitter further complicates this process. An effective channel estimation scheme is therefore required. In this paper, we introduce a MIMO-OFDM channel estimation scheme utilizing Echo State Network (ESN). Echo State Networks are powerful recurrent neural networks that can predict time-series very well. They acts as a black-box for system modeling purposes and models nonlinear dynamic systems efficiently. Simulation results for the bit error rate of the nonlinear MIMO-OFDM system show that the introduced channel estimator outperforms commonly used channel estimation schemes.
Recommended Citation
S. Mosley et al., "An Energy Efficient Decoding Scheme for Nonlinear MIMO-OFDM Network using Reservoir Computing," Proceedings of the International Joint Conference on Neural Networks (2016, Vancouver, Canada), Institute of Electrical and Electronics Engineers (IEEE), Jul 2016.
The definitive version is available at https://doi.org/10.1109/IJCNN.2016.7727329
Meeting Name
2016 International Joint Conference on Neural Networks, IJCNN (2016: Jul. 24-29, Vancouver, Canada)
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Intelligent Systems Center
Keywords and Phrases
Reservoir Computing; Echo State Network; MIMO-OFDM System; Channel Estimation; Spectral-Efficiency
International Standard Book Number (ISBN)
978-1-5090-0620-5
International Standard Serial Number (ISSN)
2161-4407
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
29 Jul 2016