Adaptive Resonance Theory (ART) for Social Media Analytics

Abstract

This chapter presents the ART-based clustering algorithms for social media analytics in detail. Sections 3.1 and 3.2 introduce Fuzzy ART and its clustering mechanisms, respectively, which provides a deep understanding of the base model that is used and extended for handling the social media clustering challenges. Important concepts such as vigilance region (VR) and its properties are explained and proven. Subsequently, Sects. 3.3-3.7 illustrate five types of ART adaptive resonance theory variants, each of which addresses the challenges in one social media analytical scenario, including automated parameter adaptation, user preference incorporation, short text clustering, heterogeneous data co-clustering and online streaming data indexing. The content of this chapter is several prior studies, including Probabilistic ART [15]

Department(s)

Electrical and Computer Engineering

Research Center/Lab(s)

Center for High Performance Computing Research

International Standard Serial Number (ISSN)

1610-3947

Document Type

Book - Chapter

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2019 Springer London, All rights reserved.

Publication Date

01 May 2019

Share

 
COinS