Abstract
A cost-effective, robust and embeddable optical interferometric strain sensor with nanoscale strain resolution is presented in this paper. The sensor consists of an optical fiber, a quartz rod with one end coated with a thin gold layer, and two metal shells employed to transfer the strain and orient and protect the optical fiber and the quartz rod. The optical fiber endface, combining with the gold-coated surface, forms an extrinsic Fabry—Perot interferometer. The sensor was firstly calibrated, and the result showed that our prototype sensor could provide a measurement resolution of 30 nano-strain (nε) and a sensitivity of 10.01 µε/ µm over a range of 1000 µε. After calibration of the sensor, the shrinkage strain of a cubic brick of mortar in real time during the drying process was monitored. The strain sensor was compared with a commercial linear variable displacement transducer, and the comparison results in four weeks demonstrated that our sensor had much higher measurement resolution and gained more detailed and useful information. Due to the advantages of the extremely simple, robust and cost-effective configuration, it is believed that the sensor is significantly beneficial to practical applications, especially for structural health monitoring.
Recommended Citation
C. Zhu et al., "An Embeddable Strain Sensor with 30 Nano-Strain Resolution based on Optical Interferometry," Inventions, vol. 3, no. 2, MDPI, Apr 2018.
The definitive version is available at https://doi.org/10.3390/inventions3020020
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Intelligent Systems Center
Keywords and Phrases
Extrinsic fabry; High resolution; Nano-strain; Optical fiber sensor; Perot interferometer; Structural health monitoring
International Standard Serial Number (ISSN)
2411-5134
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2018 The Author(s), All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Apr 2018