Low EMI High-K Tightly-Coupled Resonant Magnetic Field (TCR-HMF) Charger with Impedance Design for a 3-Wheeler Vehicle

Abstract

In this paper, we propose low electromagnetic interference (EMI) high-k tightly-coupled resonant magnetic field (TCR-HMF) charger. The high coupling coefficient, k, between Tx and Rx coils is essential for increasing power transfer efficiency (PTE) and reducing size of proposed TCR-HMF charger. As the k increase, the mutual inductance also increases. Moreover, the larger mutual inductance results in frequency splitting phenomena. Because the current harmonics are determined by the ratio of the magnitude of the input impedance at the resonant frequency to the magnitude in its harmonic frequencies, the current harmonics are increased by the frequency splitting phenomena. In this paper, a reduction method of the harmonic currents in TCR-HMF charger with impedance design method is proposed. The circuit simulation results show that the harmonic currents flowing through Tx and Rx coils can significantly be reduced by applying the proposed method. The circuit simulation results of TCR-HMF charger show that proposed method can reduces THD of Tx current and Rx current by 14.55 % and 57.13 %, respectively.

Meeting Name

2017 Wireless Power Transfer Conference, WPTC 2017 (2017: May 10-12, Taipei, Taiwan)

Department(s)

Electrical and Computer Engineering

Research Center/Lab(s)

Electromagnetic Compatibility (EMC) Laboratory

Keywords and Phrases

Magnetic field noise; Resonant magnetic field; Total harmonic distortion; Wireless power transfer

International Standard Book Number (ISBN)

978-150904585-3

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2017 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 May 2017

Share

 
COinS