In Vivo Self-Powered Wireless Transmission using Biocompatible Flexible Energy Harvesters
Abstract
Additional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self-powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self-powered system due to its high-level power consumption (microwatt-scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high-performance single-crystalline (1 − x)Pb(Mg1/3Nb2/3 )O3-(x)Pb(Zr,Ti)O3 (PMN-PZT). The PMN-PZT energy harvester generates an open-circuit voltage of 17.8 V and a short-circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications.
Recommended Citation
D. Kim et al., "In Vivo Self-Powered Wireless Transmission using Biocompatible Flexible Energy Harvesters," Advanced Functional Materials, vol. 27, no. 25, Wiley-VCH Verlag, Jul 2017.
The definitive version is available at https://doi.org/10.1002/adfm.201700341
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Electromagnetic Compatibility (EMC) Laboratory
Keywords and Phrases
in vivo energy harvesting; piezoelectric single crystals; self-powered systems; wireless data transmission
International Standard Serial Number (ISSN)
1616-301X; 1616-3028
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2017 Wiley-VCH Verlag, All rights reserved.
Publication Date
01 Jul 2017