A Non-Qubit Quantum Adder as One-Dimensional Cellular Automaton

Abstract

A complete quantum addition machine is presented and compared with methods employing unitary transformations first. A quantum half-adder circuit shown earlier can be implemented into each cell of a 1D cellular automaton. An electric Aharonov-Bohm effect version of the quantum circuit is used to illustrate this implementation. Whatever a quantum Turing machine can achieve is realized in the cellular automata architecture we propose here. The coherence requirement is limited to one cell area. The magnetic flux needed is 0.1Φ0, corresponding to 0.414 mT for a ring area of 1 square micron or an electric potential of 0.414 mV at 1 ps with an energy dissipation of 0.041 eV per iteration.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

Aharonov-Bohm effect; Cellular Automaton; Electronic transport; Quantum computing; Turing machine

International Standard Serial Number (ISSN)

1386-9477

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 Elsevier, All rights reserved.

Publication Date

01 Jan 2014

Share

 
COinS