Abstract
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
Recommended Citation
J. Huang et al., "Spatially Continuous Distributed Fiber Optic Sensing using Optical Carrier Based Microwave Interferometry," Optics Express, vol. 22, no. 15, pp. 18757 - 18769, Optical Society of America, Jul 2014.
The definitive version is available at https://doi.org/10.1364/OE.22.018757
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Energy Technology Laboratory (U.S.)
National Science Foundation (U.S.)
Keywords and Phrases
Interferometers; Optical fibers; Reflection; Fabry-Perot interferometers; Fiber optics; Interferometers; Internet protocols; Optical fibers; Reflection, Chemical and biologicals; Distributed measurements; Distributed strain measurement; Fiber-optic sensing; Microwave interferometries; Optical interferometer; Optical path difference; Single optical fibers, Internet protocols; Interferometry
International Standard Serial Number (ISSN)
1094-4087
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2014 Optical Society of America, All rights reserved.
Publication Date
01 Jul 2014
Comments
The authors acknowledge funding supports from Department of Energy, National Energy Technology Laboratory, under Contract Number DE-FE0012272, and National Science Foundation CMMI-1359716.