An Adaptive Beamforming by a Generalized Unstructured Neural Network
Abstract
In this paper, an adaptive array beamforming by an unstructured neural network based on the mathematics of holographic storage is presented. This work is inspired by similarities between brain waves and the wave propagation and subsequent interference patterns seen in holograms. Then the mathematics to produce a general mathematical description of the holographic process is analyzed. From this analysis it is shown that how the holographic process can be used as an associative memory network. Additionally, the process may also be used a regular feed-forward network. The most striking aspect of these network is that, using the holographic process, the apriori knowledge of the system may be better utilized to tailor the neural network for an adaptive beamforming problem. This aspect, makes this neural network formation process particularly useful for the beamforming.
Recommended Citation
A. Demirkol et al., "An Adaptive Beamforming by a Generalized Unstructured Neural Network," Proceedings of the 13th International Conference on Neural Information Processing (2006, Hong Kong, China), vol. 4233 LNCS - II, pp. 543 - 552, Springer Verlag, Oct 2006.
The definitive version is available at https://doi.org/10.1007/11893257
Meeting Name
13th International Conference on Neural Information Processing, ICONIP 2006 (2006: Oct. 3-6, Hong Kong, China)
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Green's Functions; Adaptive Beamforming; Feed-Forward Neural Network; Holographic Processing; Radial Basis Functions; Wave Propagation; Neural networks (Computer science)
International Standard Book Number (ISBN)
978-3-540-46482-2; 978-3-540-46481-5
International Standard Serial Number (ISSN)
0302-9743
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2006 Springer Verlag, All rights reserved.
Publication Date
01 Oct 2006