Random Dynamic Voltage Scaling Design to Enhance Security of NCL S-Box
Abstract
The demand for enhanced security in cryptographic systems is increasing rapidly in recent years with the development of mobile devices, such as smart phones and tablets. One of the most popular cryptographic devices that are used in these security sensitive devices is the smart card, which provides the security identification and authentication for those applications. To secure these cryptographic devices from various attacks has grown to become an attractive research topics. While recent advancements in public-key cryptographic algorithms try to eliminate or reduce the theoretical weaknesses to resist attacks, an alternative way to obtain the information of secret keys is from the physical implementation of the crypto-hardware. In this work, a random dynamic voltage scaling (RDVS) design has been proposed and implemented into an AES S-Box which is designed using asynchronous delay-insensitive logic referred to as Null convention logic (NCL). NCL utilizes symbolic completeness of expression to achieve self-timed behavior. It has been demonstrated that NCL contains all the properties to resist common forms of side-channel attack (SCA). RDVS is designed to enhance the resistance against SCA in the way of randomly changing the supply voltage so that "random noise" can be injected into the power traces to make the SCA more difficult to attack.
Recommended Citation
C. Sui et al., "Random Dynamic Voltage Scaling Design to Enhance Security of NCL S-Box," Proceedings of the IEEE 54th International Midwest Symposium on Circuits and Systems (2011, Seoul, South Korea), Institute of Electrical and Electronics Engineers (IEEE), Aug 2011.
The definitive version is available at https://doi.org/10.1109/MWSCAS.2011.6026673
Meeting Name
IEEE 54th International Midwest Symposium on Circuits and Systems: MWSCAS (2011: Aug. 7-10, Seoul, South Korea)
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Cryptographic Algorithms; Cryptographic Devices; Cryptographic Systems; Null Convention Logic; Power Traces; Public Keys; Random Dynamics; Random Noise; Research Topics; Secret Key; Self-Timed; Sensitive Devices; Side-Channel Attacks; Smart Phones; Supply Voltages; Various Attacks; Cellular Telephone Systems; Mobile Devices; Smart Cards; Voltage Stabilizing Circuits, Cryptography
International Standard Book Number (ISBN)
978-1612848570; 978-1612848563
International Standard Serial Number (ISSN)
1548-3746; 1558-3899
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2011 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2011