Neurocontrollers for Ball-and-Beam Systems
Abstract
The ball-and-beam problem is a well known benchmark for testing new control algorithms. We deal with the off-line training of neurocontrollers to balance the ball at a fixed arbitrary location on the beam. Resulting neurocontrollers are tested on our original hardware. We record a time series of positions of the ball, and it is the only signal permitted to use for identification and control. We utilize recurrent neural networks for all modules of our designs. We obtain a sufficiently accurate neural network identification model of the system using the parallel identification method. Two neurocontrol designs are discussed. The conventional approach is based on truncated backpropagation through time. Another design uses an adaptive critic approach, which is a form of approximate dynamic programming.
Recommended Citation
P. H. Eaton et al., "Neurocontrollers for Ball-and-Beam Systems," Intelligent Engineering Systems Through Artificial Neural Networks, vol. 6, pp. 551 - 557, American Society of Mechanical Engineers (ASME), Jan 1996.
Meeting Name
Artificial Neural Networks in Engineering Conference (ANNIE 1996) (1996: Nov. 10-13, St. Louis, MO)
Department(s)
Electrical and Computer Engineering
International Standard Book Number (ISBN)
978-0791800515
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1996 American Society of Mechnical Engineers (ASME), All rights reserved.
Publication Date
01 Jan 1996