Neurocontrollers for Ball-and-Beam Systems

Abstract

The ball-and-beam problem is a well known benchmark for testing new control algorithms. We deal with the off-line training of neurocontrollers to balance the ball at a fixed arbitrary location on the beam. Resulting neurocontrollers are tested on our original hardware. We record a time series of positions of the ball, and it is the only signal permitted to use for identification and control. We utilize recurrent neural networks for all modules of our designs. We obtain a sufficiently accurate neural network identification model of the system using the parallel identification method. Two neurocontrol designs are discussed. The conventional approach is based on truncated backpropagation through time. Another design uses an adaptive critic approach, which is a form of approximate dynamic programming.

Meeting Name

Artificial Neural Networks in Engineering Conference (ANNIE 1996) (1996: Nov. 10-13, St. Louis, MO)

Department(s)

Electrical and Computer Engineering

International Standard Book Number (ISBN)

978-0791800515

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1996 American Society of Mechnical Engineers (ASME), All rights reserved.

Publication Date

01 Jan 1996

This document is currently not available here.

Share

 
COinS