From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics-Part II: Random Cylindrical Inclusions
Abstract
A mixing rule in the theory of composites is intended to describe an inhomogeneous composite medium containing inclusions of one or several types in a host matrix as an equivalent homogeneous medium. The Maxwell Garnett mixing rule is widely used to describe effective electromagnetic properties (permittivity and permeability) of composites, in particular, biphasic materials, containing inclusions of canonical shapes (spherical, cylindrical, or ellipsoidal). This paper presents a procedure for deriving an equivalent Debye model that approximates the geometry-based Maxwell Garnett model for randomly distributed cylindrical inclusions. The derived Debye model makes the equivalent dielectric material suitable for any time-domain electromagnetic simulations.
Recommended Citation
M. H. Nisanci et al., "From Maxwell Garnett to Debye Model for Electromagnetic Simulation of Composite Dielectrics-Part II: Random Cylindrical Inclusions," IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 2, pp. 280 - 289, Institute of Electrical and Electronics Engineers (IEEE), Apr 2012.
The definitive version is available at https://doi.org/10.1109/TEMC.2011.2162845
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Electromagnetic Compatibility (EMC) Laboratory
Keywords and Phrases
Biphasic Materials; Canonical Shapes; Composite Medium; Cylindrical Inclusion; Debye Models; Electromagnetic Properties; Electromagnetic Simulation; Frequency-Dependent; Homogeneous Medium; Host Matrices; Maxwell-Garnett; Maxwell-Garnett Mixing; Maxwell-Garnett Models; Mixing Rules; Randomly Distributed; Time Domain; Composite Materials; Dielectric Materials; Maxwell Equations; Mixing, Phonons; Composite Material; Cylindrical Inclusions; Debye Model; Frequency-Dependent Material
International Standard Serial Number (ISSN)
0018-9375; 1558-187X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2012 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Apr 2012