Nonlinear Capacitors for ESD Protection

Abstract

In order to protect electronic products from Electrostatic Discharge (ESD) damage, multi-layer ceramic capacitors (MLCC) are often used to bypass the transient ESD energy. Most dielectric materials used in MLCC are nonlinear, since the dielectric constant decreases with increasing voltage, reducing the capacitance value, thus degrading the ESD protection effect. Using a large initial capacitance value will ensure sufficient ESD protection; however, the shunt capacitors also limit the signal bandwidth of the ESD-protected data channel, thus setting a maximal capacitance value at data voltage levels. This paper investigates the nonlinearity of capacitors and suggests improved tradeoff between ESD protection and data bandwidth by using the Antiferroelectric (AFE) capacitors as ESD protection. The dielectric constant of AFE material increases with increasing voltage. The voltage dependence of X7R and AFE capacitors are measured using static and nanosecond transient measurements. The ESD protection effectiveness with different material capacitors are compared by simulation. Due to very limited availability of suitable AFE material samples only hand-made capacitors have tested without investigating the long term stability of the material.

Department(s)

Electrical and Computer Engineering

Keywords and Phrases

AFE material; ESD protection; Nonlinear capacitor

International Standard Serial Number (ISSN)

2162-2264

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2012

Share

 
COinS