Automated Text Detection and Recognition in Annotated Biomedical Publication Images
Abstract
Images in biomedical publications often convey important information related to an article's content. When referenced properly, these images aid in clinical decision support. Annotations such as text labels and symbols, as provided by medical experts, are used to highlight regions of interest within the images. These annotations, if extracted automatically, could be used in conjunction with either the image caption text or the image citations (mentions) in the articles to improve biomedical information retrieval. In the current study, automatic detection and recognition of text labels in biomedical publication images was investigated. This paper presents both image analysis and feature-based approaches to extract and recognize specific regions of interest (text labels) within images in biomedical publications. Experiments were performed on 6515 characters extracted from text labels present in 200 biomedical publication images. These images are part of the data set from Image CLEF 2010. Automated character recognition experiments were conducted using geometry-, region-, exemplar-, and profile-based correlation features and Fourier descriptors extracted from the characters. Correct recognition as high as 92.67% was obtained with a support vector machine classifier, compared to a 75.90% correct recognition rate with a benchmark Optical Character Recognition technique.
Recommended Citation
S. De et al., "Automated Text Detection and Recognition in Annotated Biomedical Publication Images," International Journal of Healthcare Information Systems and Informatics, vol. 9, no. 2, pp. 34 - 63, IGI Global, Apr 2014.
The definitive version is available at https://doi.org/10.4018/ijhisi.2014040103
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
Decision support systems; Experiments; Medical imaging; Optical character recognition; Publishing; Automatic Detection; Biomedical information retrieval; Biomedical publications; Clinical decision support; Correlation features; ImageCLEF2010; Regions of interest; Support vector machine classifiers; Image processing
International Standard Serial Number (ISSN)
1555-3396
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2014 IGI Global, All rights reserved.
Publication Date
01 Apr 2014