Demand-Side Management of Domestic Electric Water Heaters using Approximate Dynamic Programming
Abstract
In this paper, two techniques based on Q-learning and Action Dependent Heuristic Dynamic Programming (ADHDP) are demonstrated for the demand-side management of Domestic Electric Water Heaters (DEWHs). The problem is modelled as a dynamic programming problem, with the state space defined by the temperature of output water, the instantaneous hot water consumption rate, and the estimated grid load. According to simulation, Q-learning and ADHDP reduce the cost of energy consumed by DEWHs by approximately 26% and 21%, respectively. The simulation results also indicate that these techniques will minimize the energy consumed during load peak periods. As a result, the customers saved about 466 and 367 annually by using Q-learning and ADHDP techniques to control their DEWHs (100 gallons tank size) operation, which is better than the cost reduction that resulted from using the state–of-the-art ($246) control technique under the same simulation parameters. To the best of the authors’ knowledge, this is the first work uses the Approximate Dynamic Programming (ADP) techniques to solve the DEWH’s load management problem.
Recommended Citation
K. Al-Jabery et al., "Demand-Side Management of Domestic Electric Water Heaters using Approximate Dynamic Programming," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 5, pp. 775 - 788, Institute of Electrical and Electronics Engineers (IEEE), May 2017.
The definitive version is available at https://doi.org/10.1109/TCAD.2016.2598563
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Center for High Performance Computing Research
Second Research Center/Lab
Intelligent Systems Center
International Standard Serial Number (ISSN)
0000-0099
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2016 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 May 2017