Time-Delay Neural Network Based Predictions of Elephant Distribution in a South African Game Reserve
Abstract
A large portion of South Africa's elephant population can be found on small wildlife reserves. When confined to enclosed reserves the elephant densities are much higher than observed in the wild. The large nutritional demands and destructive foraging behavior of elephants threaten rare species of vegetation. If conservation management is to protect threatened species of vegetation, knowing how long elephants will stay in one area of the reserve as well as which area they will move to next is essential. The goal of this study is to train an artificial neural network to predict an elephant herd's next position in the Pongola Game Reserve. Accurate predictions would provide a useful tool in assessing future impact of elephant populations on different areas of the reserve. The particle swarm optimization (PSO) algorithm is used to adapt the weights of the neural network. Results are presented to show the effectiveness of TDNN-PSO for elephant distribution prediction.
Recommended Citation
P. Palangpour et al., "Time-Delay Neural Network Based Predictions of Elephant Distribution in a South African Game Reserve," Proceedings of the IEEE Swarm Intelligence Symposium, 2006, Institute of Electrical and Electronics Engineers (IEEE), May 2006.
Meeting Name
IEEE Swarm Intelligence Symposium, 2006
Department(s)
Electrical and Computer Engineering
Keywords and Phrases
South African Game Reserve; Elephant Distribution; Game Reserve; Neural Network; Particle Swarm Optimization (PSO)
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 May 2006