Abstract
As demand continues for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design styles in order to increase circuit robustness, decrease power, and alleviate many clock-related issues. ITRS predicts that asynchronous circuits will account for 19% of chip area within the next 5 years, and 30% of chip area within the next 10 years. To meet this growing industry need, students in Computer Engineering should be introduced to asynchronous circuit design to make them more marketable and more prepared for the challenges faced by the digital design community for years to come.
Recommended Citation
S. C. Smith and W. K. Al-Assadi, "Teaching Asynchronous Digital Design in the Undergraduate Computer Engineering Curriculum," Proceedings of the IEEE Region 5 Technical Conference, 2007, Institute of Electrical and Electronics Engineers (IEEE), Apr 2007.
The definitive version is available at https://doi.org/10.1109/TPSD.2007.4380336
Meeting Name
IEEE Region 5 Technical Conference, 2007
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Engineering Education; Teaching; Asynchronous circuits; College teaching; Computer engineering
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Apr 2007