Abstract
In this paper, a novel reinforcement learning neural network (NN)-based controller, referred to adaptive critic controller, is proposed for affine nonlinear discrete-time systems with applications to nanomanipulation. In the online NN reinforcement learning method, one NN is designated as the critic NN, which approximates the long-term cost function by assuming that the states of the nonlinear systems is available for measurement. An action NN is employed to derive an optimal control signal to track a desired system trajectory while minimizing the cost function. Online updating weight tuning schemes for these two NNs are also derived. By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the tracking error and weight estimates is shown. Nanomanipulation implies manipulating objects with nanometer size. It takes several hours to perform a simple task in the nanoscale world. To accomplish the task automatically the proposed online learning control design is evaluated for the task of nanomanipulation and verified in the simulation environment
Recommended Citation
Q. Yang and J. Sarangapani, "Online Reinforcement Learning Neural Network Controller Design for Nanomanipulation," Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (2007, Honolulu, HI), Institute of Electrical and Electronics Engineers (IEEE), Jan 2007.
The definitive version is available at https://doi.org/10.1109/ADPRL.2007.368192
Meeting Name
2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (2007: Apr. 1-5, Honolulu, HI)
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Adaptive Control; Discrete Time Systems; Engines; Gradient Methods; Learning (Artificial Intelligence); Lyapunov Method; Neurocontrollers; Nonlinear Control Systems; Optimal Control
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2007 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2007
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons