Abstract
Power system stabilizers are widely used to generate supplementary control signals for the excitation system in order to damp out the low frequency oscillations. This paper proposes a stable neural network (NN) controller for the stabilization of a single machine infinite bus power system. In the power system control literature, simplified analytical models are used to represent the power system and the controller designs are not based on rigorous stability analysis. This work overcomes the two major problems by using an accurate analytical model for controller development and presents the closed-loop stability analysis. The NN is used to approximate the complex nonlinear power system online and the weights of which can be set to zero to avoid the time consuming offline training process. Magnitude constraint of the activators is modeled as saturation nonlinearities and is included in the Lyapunov stability analysis. Simulation results demonstrate that the proposed design can successfully damp out oscillations. The control algorithms of this work can also be applied to other similar control problems.
Recommended Citation
W. Liu et al., "Neural Network Stabilizing Control of Single Machine Power System with Control Limits," Proceedings of the 2004 IEEE International Joint Conference on Neural Networks (2004, Budapest), vol. 3, pp. 1823 - 1828, Institute of Electrical and Electronics Engineers (IEEE), Jul 2004.
The definitive version is available at https://doi.org/10.1109/IJCNN.2004.1380885
Meeting Name
2004 IEEE International Joint Conference on Neural Networks (2004: Jul. 25-29, Budapest)
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Keywords and Phrases
Lyapunov Methods; Lyapunov Stability Analysis; Closed Loop Stability Analysis; Closed Loop Systems; Complex Nonlinear Power System; Control Nonlinearities; Control System Design; Control System Synthesis; Excitation System; Low Frequency Oscillations Damping; Machine Control; Neural Network Stabilizing Controller; Neurocontrollers; Nonlinear Control Systems; Offline Training Process; Power System Control; Power System Stability; Power System Stabilizers; Saturation Nonlinearities; Single Machine Infinite Bus Power System; Supplementary Control Signals
International Standard Book Number (ISBN)
0-7803-8359-1
International Standard Serial Number (ISSN)
1098-7576
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jul 2004