Abstract
Nanomanipulation and nanofabrication with an atomic force microscope (AFM) or other scanning probe microscope (SPM) are a precursor for nanomanufacturing. It is still a challenging task to accomplish nanomanipulation automatically. In ambient conditions without stringent environmental controls, the task of nanomanipulation requires extensive human intervention to compensate for the spatial uncertainties of the SPM. Among these uncertainties, the thermal drift, which affects spatial resolution, is especially hard to solve because it tends to increase with time, and cannot be compensated simultaneously by feedback from the instrument. In this paper, a novel automatic compensation scheme is introduced to measure and estimate the drift one-step ahead. The scheme can be subsequently utilized to compensate for the thermal drift so that a real-time controller for nanomanipulation can be designed, as if the drift did not exist. Experimental results show that the proposed compensation scheme can predict drift with a small error, and therefore, can be embedded in the controller for manipulation tasks.
Recommended Citation
Q. Yang et al., "Automatic Drift Compensation Using Phase Correlation Method for Nanomanipulation," IEEE Transactions on Nanotechnology, Institute of Electrical and Electronics Engineers (IEEE), Mar 2008.
The definitive version is available at https://doi.org/10.1109/TNANO.2007.915021
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Third Department
Chemistry
Keywords and Phrases
Nanomanipulation; Neural Network (NN); Phase Correlation Method; Scanning Probe Microscope; Thermal Drift
International Standard Serial Number (ISSN)
1536-125X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Mar 2008