Abstract
Automating the task of nanomanipulation is extremely important since it is tedious for humans. This paper proposes an atomic force microscope (AFM) based force controller to push nano particles on the substrates. A block phase correlation-based algorithm is embedded into the controller for the compensation of the thermal drift which is considered as the main external uncertainty during nanomanipulation. Then, the interactive forces and dynamics between the tip and the particle, particle and the substrate are modeled and analyzed. Further, an adaptive critic NN controller based on adaptive dynamic programming algorithm is designed and the task of pushing nano particles is demonstrated. This adaptive critic NN position/force controller utilizes a single NN in order to approximate the cost functional and subsequently the optimal control input is calculated. Finally, the convergence of the states, NN weight estimates and force errors are shown.
Recommended Citation
Q. Yang and J. Sarangapani, "Adaptive Critic Neural Network Force Controller for Atomic Force Microscope-Based Nanomanipulation," Proceedings of the 2006 IEEE International Symposium on Intelligent Control (2006, Munich, Germany), pp. 464 - 469, Institute of Electrical and Electronics Engineers (IEEE), Oct 2006.
The definitive version is available at https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776690
Meeting Name
2006 IEEE International Symposium on Intelligent Control (2006: Oct. 4-6, Munich, Germany)
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Adaptive Control Systems; Atomic Force Microscopy; Neural Network Force Controllers; Neural Networks
International Standard Book Number (ISBN)
0-7803-9797-5
International Standard Serial Number (ISSN)
2165-3011
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Oct 2006
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons