Abstract
A new fault detection and prognostics (FDP) framework is introduced for uncertain nonlinear discrete time system by using a discrete-time nonlinear estimator which consists of an online approximator. A fault is detected by monitoring the deviation of the system output with that of the estimator output. Prior to the occurrence of the fault, this online approximator learns the system uncertainty. In the event of a fault, the online approximator learns both the system uncertainty and the fault dynamics. A stable parameter update law in discrete-time is developed to tune the parameters of the online approximator. This update law is also used to determine time to failure (TTF) for prognostics. Finally a fourth order translational oscillator with rotating actuator (TORA) system is used to demonstrate the fault detection while a mass damper system is used for demonstrating the prognostics scheme.
Recommended Citation
B. T. Thumati and J. Sarangapani, "A Model Based Fault Detection and Prognostic Scheme for Uncertain Nonlinear Discrete-Time Systems," Proceedings of the 47th IEEE Conference on Decision and Control, Institute of Electrical and Electronics Engineers (IEEE), Dec 2008.
The definitive version is available at https://doi.org/10.1109/CDC.2008.4739447
Meeting Name
47th IEEE Conference on Decision and Control
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Fault Detection-Prognostic Scheme; Fault Dynamics; Nonlinear Estimator; Online Approximator; Stable Parameter Update Law; Time-To-Failure; Uncertain Non Linear Discrete-Time System; Uncertain System
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Dec 2008
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons