Abstract
The Finite-Difference Time-Domain (FDTD) method is a robust technique for calculating electromagnetic fields, but practical problems, involving complex or large geometries, can require a long time to calculate on any one single-processor computer. One computer with many processors or many single-processor computers can reduce the computation time. However, some FDTD cell types, e.g., PML cells, require more computation time than others. Thus, the size and shape of the individual process allocations can significantly influence the computation time. This paper addresses these load balancing issues with static and quasi-dynamic approaches. The Message-Passing Interface (MPI) library is applied to a three-dimensional (3D) FDTD code. Timing results including speedup and efficiency, are presented for trials run on a cluster of sixteen processing, nodes and one server node. Two examples are shown in this paper, a power bus with 16 decoupling capacitors and a five layer power distribution network. In such models, the problem size and complexity make modeling with a serial code impractical and time consuming for engineering. Models with several million cells take days to run, but proper implementation, including load balancing, can reduce this execution time to hours on a sufficiently powerful cluster.
Recommended Citation
S. A. Seguin et al., "Static and Quasi-Dynamic Load Balancing in Parallel FDTD Codes for Signal Integrity, Power Integrity, and Packaging Applications," Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (2004, Santa Clara, CA), vol. 1, pp. 107 - 112, Institute of Electrical and Electronics Engineers (IEEE), Aug 2004.
The definitive version is available at https://doi.org/10.1109/ISEMC.2004.1350006
Meeting Name
IEEE International Symposium on Electromagnetic Compatibility (2004: Aug. 9-13, Santa Clara, CA)
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Electromagnetic Compatibility (EMC) Laboratory
Keywords and Phrases
3D FDTD Code; MPI Library; PML Cells; Application Program Interfaces; Circuit Analysis Computing; Decoupling Capacitors; Electromagnetic Fields; Electronics Packaging; Finite Difference Time-Domain Analysis; Finite-Difference Time-Domain Method; Message Passing; Message-Passing Interface; Packaging; Parallel FDTD Codes; Parallel Programming; Power Distribution Network; Power Integrity; Quasi-Dynamic Load Balancing; Resource Allocation; Signal Integrity; Software Libraries; Static Load Balancing; Three-Dimensional FDTD Code; Timing Results; Computation Time; Load Balancing; Message-Passing Interfaces; Parallel Codes; Computational Complexity; Electric Loads; Finite Difference Method; Geometry; Mathematical Models; Servers; Time Domain Analysis
International Standard Book Number (ISBN)
780384431
International Standard Serial Number (ISSN)
1077-4076
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2004 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2004