Abstract
This paper presents a novel radio-frequency identification (RFID)-based smart freezer using a new inventory-management scheme for extremely low temperature environments. The proposed solution utilizes backpressure inventory control, systematic selection of antenna configuration, and antenna power control. The proposed distributed-inventory-control (DIC) scheme dictates the amount of items transferred through the supply chain. when a high item visibility is ensured, the control scheme maintains the desired level of inventory at each supply-chain echelon. The performance of the DIC scheme is guaranteed using a Lyapunov-based analysis. The proposed RFID antenna-configuration design methodology coupled with locally asymptotically stable distributed power control ensures a 99% read rate of items while minimizing the required number of RFID antennas in the confined cold chain environments with non-RF-friendly materials. The proposed RFID-based smart-freezer performance is verified through simulations of supply chain and experiments on an industrial freezer testbed operating at -100degF.
Recommended Citation
A. Soylemezoglu et al., "RFID-Based Smart Freezer," IEEE Transactions on Industrial Electronics, Institute of Electrical and Electronics Engineers (IEEE), Jul 2009.
The definitive version is available at https://doi.org/10.1109/TIE.2009.2017553
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Sponsor(s)
Air Force Research Laboratory (Wright-Patterson Air Force Base, Ohio)
National Science Foundation (U.S.)
Keywords and Phrases
Inventory Control; Low-Temperature Chemical Management; Passive Radio-Frequency Identification (RFID); Power Control
International Standard Serial Number (ISSN)
0278-0046
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2009 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jul 2009