Abstract
In this paper, a suite of adaptive neural network (NN) controllers is designed to deliver a desired tracking performance for the control of an unknown, second-order, nonlinear discrete-time system expressed in nonstrict feedback form. In the first approach, two feedforward NNs are employed in the controller with tracking error as the feedback variable whereas in the adaptive critic NN architecture, three feedforward NNs are used. In the adaptive critic architecture, two action NNs produce virtual and actual control inputs, respectively, whereas the third critic NN approximates certain strategic utility function and its output is employed for tuning action NN weights in order to attain the near-optimal control action. Both the NN control methods present a well-defined controller design and the noncausal problem in discrete-time backstepping design is avoided via NN approximation. A comparison between the controller methodologies is highlighted. The stability analysis of the closed-loop control schemes is demonstrated. The NN controller schemes do not require an offline learning phase and the NN weights can be initialized at zero or random. Results show that the performance of the proposed controller schemes is highly satisfactory while meeting the closed-loop stability.
Recommended Citation
P. He and J. Sarangapani, "Neural-Network-Based State Feedback Control of a Nonlinear Discrete-Time System in Nonstrict Feedback Form," IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), Dec 2008.
The definitive version is available at https://doi.org/10.1109/TNN.2008.2003295
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Sponsor(s)
National Science Foundation (U.S.)
Keywords and Phrases
Adaptive Critic Control; Near-Optimal Control; Neural Network (NN) Control; Nonstrict Feedback System
International Standard Serial Number (ISSN)
1045-9227
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Dec 2008
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons