Abstract

In this paper, a new algorithm is proposed to estimate mobile speed for broadband wireless communications, which often encounter large number of fading channel taps causing severe intersymbol interference. Different from existing algorithms, which commonly assume that the fading channel coefficients are available for the speed estimators, the proposed algorithm is based on the received signals which contain unknown transmitted data, unknown frequency selective fading channel coefficients possibly including line-of-sight (LOS) components, and random receiver noise. Theoretical analysis is first carried out from the received signals, and a practical algorithm is proposed based on the analytical results. The algorithm employs a modified normalized auto-covariance of received signal power to estimate the speed of mobiles. The algorithm works well for frequency selective Rayleigh and Rician channels. The algorithm is very resistant to noise, it provides accurate speed estimation even if the signal-to-noise ratio (SNR) is as low as 0 dB. Simulation results indicate that the new algorithm is very reliable and effective to estimate mobile speed corresponding to a maximum Doppler up to 500 Hz. The algorithm has high computational efficiency and low estimation latency, with results being available within one second after communication is established.

Department(s)

Electrical and Computer Engineering

Sponsor(s)

National Science Foundation (U.S.)
University of Missouri Research Board

Keywords and Phrases

Doppler Spread Estimation; Rayleigh Fading; Rician Fading; Frequency Selective Fading; Mobile Speed Estimation

Document Type

Article - Conference proceedings

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2009 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.

Publication Date

01 Jan 2009

Share

 
COinS