Abstract
This paper presents the design and practical hardware implementation of optimal neurocontrollers that replace the conventional automatic voltage regulator (AVR) and the turbine governor of turbogenerators on multimachine power systems. The neurocontroller design uses a powerful technique of the adaptive critic design (ACD) family called dual heuristic programming (DHP). The DHP neurocontroller's training and testing are implemented on the Innovative Integration M67 card consisting of the TMS320C6701 processor. The measured results show that the DHP neurocontrollers are robust and their performance does not degrade unlike the conventional controllers even when a power system stabilizer (PSS) is included, for changes in system operating conditions and configurations. This paper also shows that it is possible to design and implement optimal neurocontrollers for multiple turbogenerators in real time, without having to do continually online training of the neural networks, thus avoiding risks of instability.
Recommended Citation
G. K. Venayagamoorthy et al., "Implementation of Adaptive Critic-Based Neurocontrollers for Turbogenerators in a Multimachine Power System," IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), Jan 2003.
The definitive version is available at https://doi.org/10.1109/TNN.2003.816054
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Keywords and Phrases
ACD; AVR; DHP Neurocontrollers; Innovative Integration M67 Card; PSS; TMS320C6701 Processor; Adaptive Control; Adaptive Critic-Based Neurocontrollers; Automatic Voltage Regulator; Dual Heuristic Programming; Heuristic Programming; Multimachine Power System; Multiple Turbogenerators; Neurocontroller Design; Neurocontrollers; Optimal Control; Optimal Neurocontrollers; Power System Control; Power System Stabilizer; Real-Time Systems; Robustness; Turbine Governor; Turbogenerators
International Standard Serial Number (ISSN)
1045-9227
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2003 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2003