Abstract
In this paper, we consider the use of nonlinear networks towards obtaining nearly optimal solutions to the control of nonlinear discrete-time (DT) systems. The method is based on least squares successive approximation solution of the generalized Hamilton-Jacobi-Bellman (GHJB) equation which appears in optimization problems. Successive approximation using the GHJB has not been applied for nonlinear DT systems. The proposed recursive method solves the GHJB equation in DT on a well-defined region of attraction. The definition of GHJB, pre-Hamiltonian function, HJB equation, and method of updating the control function for the affine nonlinear DT systems under small perturbation assumption are proposed. A neural network (NN) is used to approximate the GHJB solution. It is shown that the result is a closed-loop control based on an NN that has been tuned a priori in offline mode. Numerical examples show that, for the linear DT system, the updated control laws will converge to the optimal control, and for nonlinear DT systems, the updated control laws will converge to the suboptimal control.
Recommended Citation
Z. Chen and J. Sarangapani, "Generalized Hamilton-Jacobi-Bellman Formulation-Based Neural Network Control of Affine Nonlinear Discrete-Time Systems," IEEE Transactions on Neural Networks, Institute of Electrical and Electronics Engineers (IEEE), Jan 2008.
The definitive version is available at https://doi.org/10.1109/TNN.2007.900227
Department(s)
Electrical and Computer Engineering
Second Department
Computer Science
Keywords and Phrases
Generalized Hamilton-Jacobi-Bellman (BHJB) Equation; Neural Network (NN); Nonlinear Discrete-Time (DT) System
International Standard Serial Number (ISSN)
1045-9227
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2008 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2008
Included in
Computer Sciences Commons, Electrical and Computer Engineering Commons, Operations Research, Systems Engineering and Industrial Engineering Commons