Abstract
A Lorentzian model as the general case of a frequency-dependent behavior of a dispersive dielectric material is considered in this paper. Recursive convolution algorithms for the finite-difference time-domain (FDTD) technique for two cases of a Lorentzian medium, narrowband and wideband, depending on the ratio of a resonance line half-width at -3 dB and the resonance frequency of the material, are detailed. It is shown that a wideband Lorentzian model of a dielectric FR-4 used in printed circuit boards is more flexible and gives good agreement with experimental curves, and may be preferable as compared to a Debye model.
Recommended Citation
M. Koledintseva et al., "FDTD Analysis of Printed Circuit Boards Containing Wideband Lorentzian Dielectric Dispersive Media," Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (2002, Minneapolis, MN), vol. 2, pp. 830 - 833, Institute of Electrical and Electronics Engineers (IEEE), Aug 2002.
The definitive version is available at https://doi.org/10.1109/ISEMC.2002.1032703
Meeting Name
IEEE International Symposium on Electromagnetic Compatibility (2002: Aug. 19-23, Minneapolis, MN)
Department(s)
Electrical and Computer Engineering
Research Center/Lab(s)
Electromagnetic Compatibility (EMC) Laboratory
Keywords and Phrases
Debye Model; FDTD Technique; Lorentzian Model; Composite Materials; Dielectric FR-4; Dielectric Materials; Dispersive Dielectric Media; Dispersive Media; Finite Difference Time-Domain Analysis; Finite-Difference Time-Domain Technique; Printed Circuit Boards; Printed Circuit Testing; Recursive Convolution; Resonance Frequency; Resonance Line Half-Width; Wideband Lorentzian Dielectric Dispersive Media
International Standard Book Number (ISBN)
780372646
International Standard Serial Number (ISSN)
0190-1494
Document Type
Article - Conference proceedings
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2002 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Aug 2002