Abstract
In this paper, a novel channel-estimation scheme for an 8-PSK enhanced data rates for GSM evolution (EDGE) system with fast time-varying and frequency-selective fading channels is presented. via a mathematical derivation and simulation results, the channel impulse response (CIR) of the fast fading channel is modeled as a linear function of time during a radio burst in the EDGE system. Therefore, a least-squares-based method is proposed along with the modified burst structure for time-varying channel estimation. Given that the pilot-symbol blocks are located at the front and the end of the data block, the LS-based method is able to estimate the parameters of the time-varying CIR accurately using a linear interpolation. The proposed time-varying estimation algorithm does not cause an error floor that existed in the adaptive algorithms due to a nonideal channel tracking. Besides, the time-varying CIR in the EDGE system is not in its minimum-phase form, as is required for low-complexity reduced-state equalization methods. In order to maintain a good system performance, a Cholesky-decomposition method is introduced in front of the reduced-state equalizer to transform the time-varying CIR into its minimum-phase equivalent form. via simulation results, it is shown that the proposed algorithm is very well suited for the time-varying channel estimation and equalization, and a good bit-error-rate performance is achieved even at high Doppler frequencies up to 300 Hz with a low complexity.
Recommended Citation
S. Leong et al., "Fast Time-Varying Dispersive Channel Estimation and Equalization for 8-PSK Cellular System," IEEE Transactions on Vehicular Technology, Institute of Electrical and Electronics Engineers (IEEE), Jan 2006.
The definitive version is available at https://doi.org/10.1109/TVT.2006.877465
Department(s)
Electrical and Computer Engineering
Sponsor(s)
National Science Foundation (U.S.)
University of Missouri--Columbia Research Council
Keywords and Phrases
Channel Estimation; Fast Time-Varying Fading; Frequency-Selective Fading
International Standard Serial Number (ISSN)
0018-9545
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 Institute of Electrical and Electronics Engineers (IEEE), All rights reserved.
Publication Date
01 Jan 2006