Doctoral Dissertations
Abstract
“Many biological systems that utilize organic active sites to catalyze reactions under mild conditions invoke cooperative catalytic pathways, whereby two or more active sites work together to activate the reactant(s). The use of cooperative (bifunctional) catalysts and continuous flow chemistry (a reaction within the narrow channels of a micro‐ or microfluidic reactor) are commonplace in sustainable chemical transformation and attract a great deal of interest with respect to economic and environmentally-sustainable production of fine chemicals, pharmaceuticals, and agrochemicals, water treatment, as well as upgrading of biomass feedstocks. Although, some methods have been developed for immobilization of bifunctional catalysts for cooperative interactions within microfluidic reactors, the catalyst stability is still hampered by linker/support decomposition and active species leaching from the support/reactor to the product stream which are a major challenge for successful transferring batch chemistries to continuous flow reactions. The overall goal of this research was to overcome the catalyst leaching and product contamination problems by covalently bonding homogeneous organocatalysts on polymeric hollow fiber surfaces as a new, low-cost technique to create and engineer composite hollow fibers that can be used as a heterogeneous catalyst and continuous-flow microfluidic reactor.
Specifically, this work developed a method for immobilization of bi- and tri-functional organocatalysts on porous polyamide-imide hollow fibers (PAIHFs) and demonstrated their application as heterogeneous catalysts and continuous-flow microfluidic reactors for chemical transformation”--Abstract, page iv.
Advisor(s)
Rownaghi, Ali A.
Reddy, Prakash
Committee Member(s)
Ludlow, Douglas K.
Rezaei, Fateme
Lueking, Angela D.
Department(s)
Chemical and Biochemical Engineering
Degree Name
Ph. D. in Chemical Engineering
Research Center/Lab(s)
Center for Research in Energy and Environment (CREE)
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2020
Journal article titles appearing in thesis/dissertation
- Metal- and solvent-free synthesis of aminoalcohols under continuous flow conditions
- Optimized immobilization strategy for trifunctional organocatalysts for synthesizing amino alcohols under mild reaction conditions
- Role of ligands in immobilization of organo-catalysts on porous polymer support
Pagination
xvi, 119 pages
Note about bibliography
Includes bibliographic references.
Rights
© 2020 Abdo-Alslam Ali Abdo-Alslam Alwakwak, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Thesis Number
T 11870
Electronic OCLC #
1313117373
Recommended Citation
Alwakwak, Abdo-Alslam, "Continuous-flow synthesis of fine chemicals and pharmaceutical compounds over intelligent organocatalysts with bifunctional reactivity" (2020). Doctoral Dissertations. 3033.
https://scholarsmine.mst.edu/doctoral_dissertations/3033
Comments
The authors would like to thank the University of Missouri Research Board (UMRB) for supporting this work.