Doctoral Dissertations
Keywords and Phrases
Deoxidation; High strength steel; Impact wear; Mechanical properties; Porosity; Toughness
Abstract
"Ground Engaging Tools (GET) are the expendable replacement parts used in heavy machinery used with mining or construction equipment. GET’s protect the expensive machine components from the wear and tear found common in high-impact or high-abrasion environments. The goal of this project is to develop advanced next-generation alloy choices that outperforms the existing GET materials. A method of predicting tempered hardness of mixed microstructures was formulated. Using this model, two alloy series viz. Cr-Ni-Mo and Mn-Si-Mo-V were proposed and experimented with the goal of obtaining a high strength and impact resistant cast steel. Cast iterations of Cr-Ni-Mo alloy series were used to develop a low nitrogen induction melting practice (N< 80 ppm) along with an effective deoxidation. Size of ground Si-Zr addition controls final ZrN particle size. Good mechanical properties can be obtained if ZrN particle size is limited to 2μm. A high oxygen melt practice gave 35% improvement in notch toughness. A Mn-Si-Mo-V steel was formulated to minimize solidification shrinkage porosity. Steels were heat treated to a lath martensitic microstructure, and a Stage-I tempered hardness of 53-55 HRC. Yield strength and ultimate tensile strength averaged 1482 MPa and 1930 MPa. Tensile ductility decreased with increasing porosity. Porosity should be limited to 0.04% to get elongation of 10% or more. Manganese and Nickel additions lowered the yield strength. Lowered yield to tensile strength ratio resulted in up to 46% improvement in impact wear simulated using a gouging abrasion test relative to steels currently employed. Recommendations for further cast alloy iterations, wear performance study and characterization are provided"--Abstract, page iv.
Advisor(s)
Van Aken, David C.
Committee Member(s)
O'Malley, Ronald J.
Bartlett, Laura
Xu, Mingzhi
Chandrashekhara, K.
Department(s)
Materials Science and Engineering
Degree Name
Ph. D. in Metallurgical Engineering
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2019
Journal article titles appearing in thesis/dissertation
- On predicting quenched and tempered hardness of mixed microstructures using steel chemistry
- Empirical methods of predicting quenched and tempered hardness
- Controlling nitrogen pick-up during induction melting low alloy steels
- Effect of deoxidation and pouring practice on the mechanical properties of Stage-I tempered Cr-Ni-Mo steel
- Mechanical properties and impact wear resistance of 540 Brinell hardness Mn-Si-Mo-V steel
Pagination
xviii, 161 pages
Note about bibliography
Includes bibliographic references.
Rights
© 2019 Viraj Ashok Athavale, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Thesis Number
T 11614
Electronic OCLC #
1139525622
Recommended Citation
Athavale, Viraj Ashok, "Development of Stage-I tempered high strength cast steel for ground engaging tools" (2019). Doctoral Dissertations. 2826.
https://scholarsmine.mst.edu/doctoral_dissertations/2826