Doctoral Dissertations
Keywords and Phrases
Frequency uncertainty; Microwave imaging; Millimeter wave imaging; Nondestructive testing; Synthetic aperture radar
Abstract
"Millimeter wave SAR imaging has shown promise as an inspection tool for human skin for characterizing burns and skin cancers. However, the current state-of-the-art in microwave camera technology is not yet suited for developing a millimeter wave camera for human skin inspection. Consequently, the objective of this dissertation has been to build the necessary foundation of research to achieve such a millimeter wave camera. First, frequency uncertainty in signals generated by a practical microwave source, which is prone to drift in output frequency, was studied to determine its effect on SAR-generated images. A direct relationship was found between the level of image distortions caused by frequency uncertainty and the product of frequency uncertainty and distance between the imaging measurement grid and sample under test. The second investigation involved the development of a millimeter wave imaging system that forms the basic building block for a millimeter wave camera. The imaging system, composed of two system-on-chip transmitters and receivers and an antipodal Vivaldi-style antenna, operated in the 58-64 GHz frequency range and employed the ω-k SAR algorithm. Imaging tests on burnt pigskin showed its potential for imaging and characterizing flaws in skin. The final investigation involved the development of a new microwave imaging methodology, named Chaotic Excitation Synthetic Aperture Radar (CESAR), for designing microwave and millimeter wave cameras at a fraction of the size and hardware complexity of previous systems. CESAR is based on transmitting and receiving from all antennas in a planar array simultaneously. A small microwave camera operating in the 23-25 GHz frequency was designed and fabricated based on CESAR. Imaging results with the camera showed it was capable of basic feature detection for various applications"--Abstract, page iv.
Advisor(s)
Zoughi, R.
Committee Member(s)
Ghasr, Mohammad Tayeb Ahmad, 1980-
Stanley, R. Joe
Beetner, Daryl G.
Adekpedjou, Akim
Department(s)
Electrical and Computer Engineering
Degree Name
Ph. D. in Electrical Engineering
Sponsor(s)
National Science Foundation (U.S.)
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2019
Journal article titles appearing in thesis/dissertation
- Effect of instrument frequency uncertainty on wideband microwave synthetic aperture radar (SAR) images
- Design of a compact V-band transceiver and antenna for millimeter wave imaging systems
- A compact microwave camera based on chaotic excitation synthetic aperture radar (CESAR)
Pagination
xiii, 124 pages
Note about bibliography
Includes bibliographic references.
Rights
© 2019 Matthew Jared Horst, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Thesis Number
T 11531
Electronic OCLC #
1105154980
Recommended Citation
Horst, Matthew Jared, "Hardware architectures for compact microwave and millimeter wave cameras" (2019). Doctoral Dissertations. 2777.
https://scholarsmine.mst.edu/doctoral_dissertations/2777