Doctoral Dissertations
Keywords and Phrases
Compressed sensing; Microwave imaging
Abstract
"This dissertation investigates image reconstruction algorithms for near-field, two dimensional (2D) synthetic aperture radar (SAR) using compressed sensing (CS) based methods. In conventional SAR imaging systems, acquiring higher-quality images requires longer measuring time and/or more elements in an antenna array. Millimeter wave imaging systems using evenly-spaced antenna arrays also have spatial resolution constraints due to the large size of the antennas. This dissertation applies the CS principle to a bistatic antenna array that consists of separate transmitter and receiver subarrays very sparsely and non-uniformly distributed on a 2D plane. One pair of transmitter and receiver elements is turned on at a time, and different pairs are turned on in series to achieve synthetic aperture and controlled random measurements. This dissertation contributes to CS-hardware co-design by proposing several signal-processing methods, including monostatic approximation, re-gridding, adaptive interpolation, CS-based reconstruction, and image denoising. The proposed algorithms enable the successful implementation of CS-SAR hardware cameras, improve the resolution and image quality, and reduce hardware cost and experiment time. This dissertation also describes and analyzes the results for each independent method. The algorithms proposed in this dissertation break the limitations of hardware configuration. By using 16 x 16 transmit and receive elements with an average space of 16 mm, the sparse-array camera achieves the image resolution of 2 mm. This is equivalent to six percent of the λ/4 evenly-spaced array. The reconstructed images achieve similar quality as the fully-sampled array with the structure similarity (SSIM) larger than 0.8 and peak signal-to-noise ratio (PSNR) greater than 25"--Abstract, page iv.
Advisor(s)
Zheng, Y. Rosa
Committee Member(s)
Moss, Randy Hays, 1953-
Ghasr, Mohammad Tayeb Ahmad, 1980-
Donnell, Kristen M.
He, Xiaoming
Department(s)
Electrical and Computer Engineering
Degree Name
Ph. D. in Electrical Engineering
Sponsor(s)
Missouri University of Science and Technology. Intelligent Systems Center
United States. Army. Small Business Technology Transfer Program
Wilkens Missouri Endowment
Research Center/Lab(s)
Intelligent Systems Center
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2018
Journal article titles appearing in thesis/dissertation
- A low complexity image reconstruction method for synthetic aperture radar imaging systems with very sparse arrays
- Microwave imaging from sparse measurements for near-field synthetic aperture radar (SAR)
- An image denoising method for SAR images with low-sampling measurements
Pagination
xii, 104 pages
Note about bibliography
Includes bibliographic references.
Rights
© 2018 Xiahan Yang, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Thesis Number
T 11454
Electronic OCLC #
1084474628
Recommended Citation
Yang, Xiahan, "Signal processing for microwave imaging systems with very sparse array" (2018). Doctoral Dissertations. 2733.
https://scholarsmine.mst.edu/doctoral_dissertations/2733
Comments
The work was supported in part by the US Department of Defense STTR project W31P4Q-14-C-0146, the Intelligent Systems Center of Missouri University of Science and Technology, and the Wilkens Missouri telecommunication endowment fund.