Doctoral Dissertations
Keywords and Phrases
Grüss inequality; Ostrowski inequality
Abstract
"In this dissertation, the recently discovered concept of time scales is applied to probability theory, thus unifying discrete, continuous and many other cases. A short introduction to the theory of time scales is provided. Following this preliminary overview, the moment generating function is derived using a Laplace transformation on time scales. Various unifications of statements and new theorems in statistics are shown. Next, distributions on time scales are defined and their properties are studied. Most of the derived formulas and statements correspond exactly to those from discrete and continuous calculus and extend the applicability to many other cases. Some theorems differ from the ones found in the literature, but improve and simplify their handling. Finally, applications to finance, economics and inequalities of Ostrowski and Grüss type are presented. Throughout this paper, our results are compared to their well known counterparts in discrete and continuous analysis and many examples are given"--Abstract, page iii.
Advisor(s)
Bohner, Martin, 1966-
Committee Member(s)
Akin, Elvan
Gelles, Gregory M.
Wen, Xuerong
Morgan, Ilene H.
Department(s)
Mathematics and Statistics
Degree Name
Ph. D. in Mathematics
Publisher
Missouri University of Science and Technology
Publication Date
Fall 2011
Pagination
viii, 174 pages
Note about bibliography
Includes bibliographical references (pages 169-173).
Rights
© 2011 Thomas Matthews, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Subject Headings
Differentiable dynamical systemsFree probability theory
Thesis Number
T 9901
Print OCLC #
794763561
Electronic OCLC #
763228012
Recommended Citation
Matthews, Thomas, "Probability theory on time scales and applications to finance and inequalities" (2011). Doctoral Dissertations. 2241.
https://scholarsmine.mst.edu/doctoral_dissertations/2241