Doctoral Dissertations
Keywords and Phrases
Probabilistic Modeling; Unified Theory
Abstract
"Bond between deformed rebar and concrete is affected by rebar deformation pattern, concrete properties, concrete confinement, and rebar-concrete interfacial properties. Two distinct groups of bond models were traditionally developed based on the dominant effects of concrete splitting and near-interface shear-off failures. Their accuracy highly depended upon the test data sets selected in analysis and calibration. In this study, a unified bond model is proposed and developed based on an analogy to the indentation problem around the rib front of deformed rebar. This mechanics-based model can take into account the combined effect of concrete splitting and interface shear-off failures, resulting in average bond strengths for all practical scenarios. To understand the fracture process associated with bond failure, a probabilistic meso-scale model of concrete is proposed and its sensitivity to interface and confinement strengths are investigated. Both the mechanical and finite element models are validated with the available test data sets and are superior to existing models in prediction of average bond strength (< 6% error) and crack spacing (< 6% error). The validated bond model is applied to derive various interrelations among concrete crushing, concrete splitting, interfacial behavior, and the rib spacing-to-height ratio of deformed rebar. It can accurately predict the transition of failure modes from concrete splitting to rebar pullout and predict the effect of rebar surface characteristics as the rib spacing-to-height ratio increases. Based on the unified theory, a global bond model is proposed and developed by introducing bond-slip laws, and validated with testing of concrete beams with spliced reinforcement, achieving a load capacity prediction error of less than 26%. The optimal rebar parameters and concrete cover in structural designs can be derived from this study."--Abstract, page iii.
Advisor(s)
Chen, Genda
Committee Member(s)
Brow, Richard K.
Myers, John
ElGawady, Mohamed
Sneed, Lesley
Department(s)
Civil, Architectural and Environmental Engineering
Degree Name
Ph. D. in Civil Engineering
Sponsor(s)
National Science Foundation (U.S.)
Publisher
Missouri University of Science and Technology
Publication Date
Spring 2014
Pagination
xiii, 147 pages
Note about bibliography
Includes bibliographical references (pages 140-146).
Rights
© 2014 Chenglin Wu, All rights reserved.
Document Type
Dissertation - Open Access
File Type
text
Language
English
Subject Headings
Reinforced concrete constructionConcrete -- FractureEnamel and enamelingCoating processes
Thesis Number
T 10492
Electronic OCLC #
882552569
Recommended Citation
Wu, Chenglin, "A unified bond theory, probabilistic meso-scale modeling, and experimental validation of deformed steel rebar in normal strength concrete" (2014). Doctoral Dissertations. 2118.
https://scholarsmine.mst.edu/doctoral_dissertations/2118