Doctoral Dissertations
Part I: Improved handling of geometry details in finite difference time domain method; Part II: Method of circuit extraction using finite difference frequency domain matrix formulation with application to power bus modeling
Keywords and Phrases
Computational electromagnetics; Finite Difference Time Domain (FDTD); Subgridding
Abstract
"In the first half of this work, a subgridding algorithm with separate spatial and temporal subgridding interfaces in proposed, which makes it possible to analyze and test the spatial and temporal algorithms separately and may also provide additional flexibility. The spatial subgridding method is based on the linear interpolation of the electric and magnetic current densities. The forward and backward coupling schemes are designed to be symmetric, which ensures the stability of the subgridding algorithm. The temporal subgridding method is based on a simple assumption that the field values at the temporal subgridding interface keep constant during one coarse time step. The stability of this scheme is illustrated by using a one-dimensional FDTD model. The full subgridding algorithm combining the two sub-algorithms is also implemented. The stability and accuracy of the subgridding method are tested numerically. The second part of the dissertation proposes a procedure to generate an equivalent circuit network from the Finite Difference Time Domain (FDTD) model. A matrix equation that has the same form of Kirchhoff Current Law (KCL) is derived from the formulation of the Finite Difference Frequency Domain (FDFD) method. Based on the matrix equation, an equivalent circuit can be generated, and the extracted circuit model can be simulated in a SPICE-like solver. Although the generated circuit model does not reduce the complexity of its 3-D full wave counterpart, it provides the possibility of an easy combination of the SPICE circuit and full wave models"--Abstract, page iii.
Department(s)
Electrical and Computer Engineering
Degree Name
Ph. D. in Electrical Engineering
Publisher
University of Missouri--Rolla
Publication Date
Summer 2005
Pagination
ix, 98 pages
Note about bibliography
Includes bibliographical references (pages 94-97).
Rights
© 2005 Kai Xiao, All rights reserved.
Document Type
Dissertation - Citation
File Type
text
Language
English
Subject Headings
ElectromagnetismFinite differences -- Mathematical modelsElectronic circuit design -- Mathematical modelsBus conductors (Electricity)
Thesis Number
T 8717
Print OCLC #
71204412
Recommended Citation
Xiao, Kai, "Part I: Improved handling of geometry details in finite difference time domain method; Part II: Method of circuit extraction using finite difference frequency domain matrix formulation with application to power bus modeling" (2005). Doctoral Dissertations. 1630.
https://scholarsmine.mst.edu/doctoral_dissertations/1630
Share My Dissertation If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.