Doctoral Dissertations

A generalization based hybrid algorithm for clustering semi-structured data

Author

Ming-Yi Shih

Abstract

"In this work, a generalized based methodology that combines attribute hierarchy construction, object generalization and data clustering is presented. The algorithm works well on semi-structured data and requires only a minimum of domain knowledge. Since the algorithm reduces the dimensionality of the semi-structured data, clustering of the resulting generalized data often requires less execution time and computer memory"--Abstract, page iii.

Department(s)

Computer Science

Degree Name

Ph. D. in Computer Science

Publisher

University of Missouri--Rolla

Publication Date

Summer 2004

Pagination

xiii, 137 pages

Note about bibliography

Includes bibliographical references (pages 130-136).

Rights

© 2004 Ming-Yi Shih, All rights reserved.

Document Type

Dissertation - Citation

File Type

text

Language

English

Subject Headings

Cluster analysisAlgorithms -- Computer programsData mining

Thesis Number

T 8556

Print OCLC #

62211969

This document is currently not available here.

Share My Dissertation If you are the author of this work and would like to grant permission to make it openly accessible to all, please click the button above.

Share

 
COinS